This issue maintains our aim of covering leprosy in the broadest way and there are articles ranging from molecular biology to the usefulness of goats. The last issue of Leprosy Review was devoted to the *Mycobacterium leprae* genome and looked at ways in which knowledge of the genome will benefit leprosy research and treatment. In this issue the article by Dr Chae and colleagues (p. 41) throws interesting light on the molecular epidemiology of *M. leprae*. The authors analysed and compared a short sequence of the *rpoT* gene in isolates from patients acquiring leprosy either within or outside Korea. The patients who had acquired infection outside Korea had three copies of a particular tandem repeat but infections originating within Korea were associated with a four-copy repeat. The four-copy repeat pattern is also seen in Japan and suggests that similar *M. leprae* strains have circulated in Korea and Japan. The genome-based work may soon yield more interesting information about geographical differences in *M. leprae*.

Understanding the *M. leprae* genome has already given insights into rifampicin resistance. The target of rifampicin is an RNA polymerase, which is encoded by the *rpoB* gene, one of the first *M. leprae* genes to be sequenced and analysed. Analysis of rifampicin resistant strains suggests that *rpoB* resistance results from mutations of this gene. On p. 2, Dr Ji reviews the data on rifampicin resistance and proposes that PCR based DNA sequence analysis of the *rpoB* gene might be a cost effective alternative technique for diagnosing rifampicin resistance and should supersede the technically difficult mouse footpad model.

Guido Groenen reviews 20 years of data collection from the ALERT leprosy control programme in central Ethiopia (p. 29). There has been an increase in multibacillary cases and a decrease in childhood cases. These trends are difficult to interpret because there have been changes in case definitions and treatment duration, and population changes. Understanding the long term trends of leprosy and evaluating the effectiveness of interventions requires stable definitions and consistent field programmes.

The changing features of the HIV epidemic are reviewed by Sebastian Lucas (p. 64). The opportunistic infections seen in HIV infected patients vary with geography and the disease state and now the additional toxicities of the anti-retroviral drugs themselves are presenting. Why HIV patients should be so susceptible to tuberculosis but remain relatively unaffected by leprosy remains a mystery.

And what do the goats contribute? They seemed crucial to the success of a rehabilitation project in Keral (Jaydevan and Balkrishnan, p. 88) where leprosy affected patients were given goats and after 18 months the goats had multiplied threefold from 87 to 238, enabling patients to sell animals and strengthen their finances.